3.1.29 \(\int \frac {d+e x+f x^2+g x^3+h x^4}{(4-5 x^2+x^4)^2} \, dx\) [29]

3.1.29.1 Optimal result
3.1.29.2 Mathematica [A] (verified)
3.1.29.3 Rubi [A] (verified)
3.1.29.4 Maple [A] (verified)
3.1.29.5 Fricas [B] (verification not implemented)
3.1.29.6 Sympy [F(-1)]
3.1.29.7 Maxima [A] (verification not implemented)
3.1.29.8 Giac [A] (verification not implemented)
3.1.29.9 Mupad [B] (verification not implemented)

3.1.29.1 Optimal result

Integrand size = 33, antiderivative size = 150 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {5 e+8 g-(2 e+5 g) x^2}{18 \left (4-5 x^2+x^4\right )}+\frac {x \left (17 d+20 f+32 h-(5 d+8 f+20 h) x^2\right )}{72 \left (4-5 x^2+x^4\right )}+\frac {1}{432} (19 d+52 f+112 h) \text {arctanh}\left (\frac {x}{2}\right )-\frac {1}{54} (d+7 f+13 h) \text {arctanh}(x)+\frac {1}{54} (2 e+5 g) \log \left (1-x^2\right )-\frac {1}{54} (2 e+5 g) \log \left (4-x^2\right ) \]

output
1/18*(5*e+8*g-(2*e+5*g)*x^2)/(x^4-5*x^2+4)+1/72*x*(17*d+20*f+32*h-(5*d+8*f 
+20*h)*x^2)/(x^4-5*x^2+4)+1/432*(19*d+52*f+112*h)*arctanh(1/2*x)-1/54*(d+7 
*f+13*h)*arctanh(x)+1/54*(2*e+5*g)*ln(-x^2+1)-1/54*(2*e+5*g)*ln(-x^2+4)
 
3.1.29.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.06 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{864} \left (-\frac {12 \left (4 e \left (-5+2 x^2\right )+4 g \left (-8+5 x^2\right )+x \left (4 f \left (-5+2 x^2\right )+d \left (-17+5 x^2\right )+4 h \left (-8+5 x^2\right )\right )\right )}{4-5 x^2+x^4}+8 (d+4 e+7 f+10 g+13 h) \log (1-x)-(19 d+32 e+52 f+80 g+112 h) \log (2-x)-8 (d-4 e+7 f-10 g+13 h) \log (1+x)+(19 d-32 e+52 f-80 g+112 h) \log (2+x)\right ) \]

input
Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(4 - 5*x^2 + x^4)^2,x]
 
output
((-12*(4*e*(-5 + 2*x^2) + 4*g*(-8 + 5*x^2) + x*(4*f*(-5 + 2*x^2) + d*(-17 
+ 5*x^2) + 4*h*(-8 + 5*x^2))))/(4 - 5*x^2 + x^4) + 8*(d + 4*e + 7*f + 10*g 
 + 13*h)*Log[1 - x] - (19*d + 32*e + 52*f + 80*g + 112*h)*Log[2 - x] - 8*( 
d - 4*e + 7*f - 10*g + 13*h)*Log[1 + x] + (19*d - 32*e + 52*f - 80*g + 112 
*h)*Log[2 + x])/864
 
3.1.29.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {2202, 1576, 1141, 2009, 2206, 25, 1480, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (x^4-5 x^2+4\right )^2} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4-5 x^2+4\right )^2}dx+\int \frac {x \left (g x^2+e\right )}{\left (x^4-5 x^2+4\right )^2}dx\)

\(\Big \downarrow \) 1576

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4-5 x^2+4\right )^2}dx+\frac {1}{2} \int \frac {g x^2+e}{\left (x^4-5 x^2+4\right )^2}dx^2\)

\(\Big \downarrow \) 1141

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4-5 x^2+4\right )^2}dx+\frac {1}{2} \int \left (\frac {e+g}{9 \left (1-x^2\right )^2}-\frac {2 e+5 g}{27 \left (1-x^2\right )}+\frac {2 e+5 g}{27 \left (4-x^2\right )}+\frac {e+4 g}{9 \left (4-x^2\right )^2}\right )dx^2\)

\(\Big \downarrow \) 2009

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4-5 x^2+4\right )^2}dx+\frac {1}{2} \left (\frac {e+g}{9 \left (1-x^2\right )}+\frac {e+4 g}{9 \left (4-x^2\right )}+\frac {1}{27} (2 e+5 g) \log \left (1-x^2\right )-\frac {1}{27} (2 e+5 g) \log \left (4-x^2\right )\right )\)

\(\Big \downarrow \) 2206

\(\displaystyle -\frac {1}{72} \int -\frac {-\left ((5 d+8 f+20 h) x^2\right )+d-20 f-32 h}{x^4-5 x^2+4}dx+\frac {x \left (-\left (x^2 (5 d+8 f+20 h)\right )+17 d+20 f+32 h\right )}{72 \left (x^4-5 x^2+4\right )}+\frac {1}{2} \left (\frac {e+g}{9 \left (1-x^2\right )}+\frac {e+4 g}{9 \left (4-x^2\right )}+\frac {1}{27} (2 e+5 g) \log \left (1-x^2\right )-\frac {1}{27} (2 e+5 g) \log \left (4-x^2\right )\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{72} \int \frac {-\left ((5 d+8 f+20 h) x^2\right )+d-20 f-32 h}{x^4-5 x^2+4}dx+\frac {x \left (-\left (x^2 (5 d+8 f+20 h)\right )+17 d+20 f+32 h\right )}{72 \left (x^4-5 x^2+4\right )}+\frac {1}{2} \left (\frac {e+g}{9 \left (1-x^2\right )}+\frac {e+4 g}{9 \left (4-x^2\right )}+\frac {1}{27} (2 e+5 g) \log \left (1-x^2\right )-\frac {1}{27} (2 e+5 g) \log \left (4-x^2\right )\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {1}{72} \left (\frac {4}{3} (d+7 f+13 h) \int \frac {1}{x^2-1}dx-\frac {1}{3} (19 d+52 f+112 h) \int \frac {1}{x^2-4}dx\right )+\frac {x \left (-\left (x^2 (5 d+8 f+20 h)\right )+17 d+20 f+32 h\right )}{72 \left (x^4-5 x^2+4\right )}+\frac {1}{2} \left (\frac {e+g}{9 \left (1-x^2\right )}+\frac {e+4 g}{9 \left (4-x^2\right )}+\frac {1}{27} (2 e+5 g) \log \left (1-x^2\right )-\frac {1}{27} (2 e+5 g) \log \left (4-x^2\right )\right )\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {1}{72} \left (\frac {1}{6} \text {arctanh}\left (\frac {x}{2}\right ) (19 d+52 f+112 h)-\frac {4}{3} \text {arctanh}(x) (d+7 f+13 h)\right )+\frac {x \left (-\left (x^2 (5 d+8 f+20 h)\right )+17 d+20 f+32 h\right )}{72 \left (x^4-5 x^2+4\right )}+\frac {1}{2} \left (\frac {e+g}{9 \left (1-x^2\right )}+\frac {e+4 g}{9 \left (4-x^2\right )}+\frac {1}{27} (2 e+5 g) \log \left (1-x^2\right )-\frac {1}{27} (2 e+5 g) \log \left (4-x^2\right )\right )\)

input
Int[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(4 - 5*x^2 + x^4)^2,x]
 
output
(x*(17*d + 20*f + 32*h - (5*d + 8*f + 20*h)*x^2))/(72*(4 - 5*x^2 + x^4)) + 
 (((19*d + 52*f + 112*h)*ArcTanh[x/2])/6 - (4*(d + 7*f + 13*h)*ArcTanh[x]) 
/3)/72 + ((e + g)/(9*(1 - x^2)) + (e + 4*g)/(9*(4 - x^2)) + ((2*e + 5*g)*L 
og[1 - x^2])/27 - ((2*e + 5*g)*Log[4 - x^2])/27)/2
 

3.1.29.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 1141
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_ 
Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[1/c^p   Int[ExpandIntegrand[ 
(d + e*x)^m*(b/2 - q/2 + c*x)^p*(b/2 + q/2 + c*x)^p, x], x], x] /; EqQ[p, - 
1] ||  !FractionalPowerFactorQ[q]] /; FreeQ[{a, b, c, d, e}, x] && ILtQ[p, 
0] && IntegerQ[m] && NiceSqrtQ[b^2 - 4*a*c]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1576
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^( 
p_.), x_Symbol] :> Simp[1/2   Subst[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x] 
, x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 

rule 2206
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = 
 Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Poly 
nomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^ 
4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c 
*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[Px, 
a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4* 
p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x 
^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
 
3.1.29.4 Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.95

method result size
norman \(\frac {\left (-\frac {5 d}{72}-\frac {f}{9}-\frac {5 h}{18}\right ) x^{3}+\left (\frac {17 d}{72}+\frac {5 f}{18}+\frac {4 h}{9}\right ) x +\left (-\frac {e}{9}-\frac {5 g}{18}\right ) x^{2}+\frac {5 e}{18}+\frac {4 g}{9}}{x^{4}-5 x^{2}+4}+\left (-\frac {19 d}{864}-\frac {e}{27}-\frac {13 f}{216}-\frac {5 g}{54}-\frac {7 h}{54}\right ) \ln \left (x -2\right )+\left (-\frac {d}{108}+\frac {e}{27}-\frac {7 f}{108}+\frac {5 g}{54}-\frac {13 h}{108}\right ) \ln \left (x +1\right )+\left (\frac {d}{108}+\frac {e}{27}+\frac {7 f}{108}+\frac {5 g}{54}+\frac {13 h}{108}\right ) \ln \left (x -1\right )+\left (\frac {19 d}{864}-\frac {e}{27}+\frac {13 f}{216}-\frac {5 g}{54}+\frac {7 h}{54}\right ) \ln \left (x +2\right )\) \(143\)
default \(-\frac {\frac {d}{144}-\frac {e}{72}+\frac {f}{36}-\frac {g}{18}+\frac {h}{9}}{x +2}+\left (\frac {19 d}{864}-\frac {e}{27}+\frac {13 f}{216}-\frac {5 g}{54}+\frac {7 h}{54}\right ) \ln \left (x +2\right )+\left (-\frac {d}{108}+\frac {e}{27}-\frac {7 f}{108}+\frac {5 g}{54}-\frac {13 h}{108}\right ) \ln \left (x +1\right )-\frac {\frac {d}{36}-\frac {e}{36}+\frac {f}{36}-\frac {g}{36}+\frac {h}{36}}{x +1}-\frac {\frac {d}{36}+\frac {e}{36}+\frac {f}{36}+\frac {g}{36}+\frac {h}{36}}{x -1}+\left (\frac {d}{108}+\frac {e}{27}+\frac {7 f}{108}+\frac {5 g}{54}+\frac {13 h}{108}\right ) \ln \left (x -1\right )+\left (-\frac {19 d}{864}-\frac {e}{27}-\frac {13 f}{216}-\frac {5 g}{54}-\frac {7 h}{54}\right ) \ln \left (x -2\right )-\frac {\frac {d}{144}+\frac {e}{72}+\frac {f}{36}+\frac {g}{18}+\frac {h}{9}}{x -2}\) \(178\)
risch \(\frac {\left (-\frac {5 d}{72}-\frac {f}{9}-\frac {5 h}{18}\right ) x^{3}+\left (\frac {17 d}{72}+\frac {5 f}{18}+\frac {4 h}{9}\right ) x +\left (-\frac {e}{9}-\frac {5 g}{18}\right ) x^{2}+\frac {5 e}{18}+\frac {4 g}{9}}{x^{4}-5 x^{2}+4}-\frac {\ln \left (x +1\right ) d}{108}+\frac {\ln \left (x +1\right ) e}{27}-\frac {7 \ln \left (x +1\right ) f}{108}+\frac {5 \ln \left (x +1\right ) g}{54}-\frac {13 \ln \left (x +1\right ) h}{108}+\frac {19 \ln \left (x +2\right ) d}{864}-\frac {\ln \left (x +2\right ) e}{27}+\frac {13 \ln \left (x +2\right ) f}{216}-\frac {5 \ln \left (x +2\right ) g}{54}+\frac {7 \ln \left (x +2\right ) h}{54}-\frac {19 \ln \left (2-x \right ) d}{864}-\frac {\ln \left (2-x \right ) e}{27}-\frac {13 \ln \left (2-x \right ) f}{216}-\frac {5 \ln \left (2-x \right ) g}{54}-\frac {7 \ln \left (2-x \right ) h}{54}+\frac {\ln \left (1-x \right ) d}{108}+\frac {\ln \left (1-x \right ) e}{27}+\frac {7 \ln \left (1-x \right ) f}{108}+\frac {5 \ln \left (1-x \right ) g}{54}+\frac {13 \ln \left (1-x \right ) h}{108}\) \(219\)
parallelrisch \(-\frac {-384 g -240 e +96 f \,x^{3}+240 g \,x^{2}+240 h \,x^{3}-204 d x +76 \ln \left (x -2\right ) d +128 \ln \left (x -2\right ) e -32 \ln \left (x -1\right ) d -128 \ln \left (x -1\right ) e +32 \ln \left (x -2\right ) x^{4} e +104 \ln \left (x +1\right ) x^{4} h -112 \ln \left (x +2\right ) x^{4} h -560 \ln \left (x -2\right ) x^{2} h +520 \ln \left (x -1\right ) x^{2} h -520 \ln \left (x +1\right ) x^{2} h -208 \ln \left (x +2\right ) f +224 \ln \left (x +1\right ) f +96 e \,x^{2}+560 \ln \left (x +2\right ) x^{2} h -160 \ln \left (x -2\right ) x^{2} e +40 \ln \left (x -1\right ) x^{2} d +160 \ln \left (x -1\right ) x^{2} e -40 \ln \left (x +1\right ) x^{2} d +160 \ln \left (x +1\right ) x^{2} e +95 \ln \left (x +2\right ) x^{2} d -160 \ln \left (x +2\right ) x^{2} e +19 \ln \left (x -2\right ) x^{4} d -76 \ln \left (x +2\right ) d +112 \ln \left (x -2\right ) x^{4} h -104 \ln \left (x -1\right ) x^{4} h -384 h x +128 \ln \left (x +2\right ) e +32 \ln \left (x +1\right ) d -128 \ln \left (x +1\right ) e +60 x^{3} d -56 \ln \left (x -1\right ) x^{4} f +56 \ln \left (x +1\right ) x^{4} f -52 \ln \left (x +2\right ) x^{4} f -320 \ln \left (x +1\right ) g +80 \ln \left (x -2\right ) x^{4} g -80 \ln \left (x -1\right ) x^{4} g -80 \ln \left (x +1\right ) x^{4} g +80 \ln \left (x +2\right ) x^{4} g +320 \ln \left (x +2\right ) g -400 \ln \left (x -2\right ) x^{2} g +400 \ln \left (x -1\right ) x^{2} g +400 \ln \left (x +1\right ) x^{2} g -400 \ln \left (x +2\right ) x^{2} g +320 \ln \left (x -2\right ) g -320 \ln \left (x -1\right ) g -260 \ln \left (x -2\right ) x^{2} f +280 \ln \left (x -1\right ) x^{2} f -280 \ln \left (x +1\right ) x^{2} f +260 \ln \left (x +2\right ) x^{2} f +52 \ln \left (x -2\right ) x^{4} f +208 \ln \left (x -2\right ) f -224 \ln \left (x -1\right ) f +448 \ln \left (x -2\right ) h -416 \ln \left (x -1\right ) h -8 \ln \left (x -1\right ) x^{4} d -32 \ln \left (x -1\right ) x^{4} e +8 \ln \left (x +1\right ) x^{4} d -32 \ln \left (x +1\right ) x^{4} e -19 \ln \left (x +2\right ) x^{4} d +32 \ln \left (x +2\right ) x^{4} e -95 \ln \left (x -2\right ) x^{2} d +416 \ln \left (x +1\right ) h -448 \ln \left (x +2\right ) h -240 f x}{864 \left (x^{4}-5 x^{2}+4\right )}\) \(604\)

input
int((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4-5*x^2+4)^2,x,method=_RETURNVERBOSE)
 
output
((-5/72*d-1/9*f-5/18*h)*x^3+(17/72*d+5/18*f+4/9*h)*x+(-1/9*e-5/18*g)*x^2+5 
/18*e+4/9*g)/(x^4-5*x^2+4)+(-19/864*d-1/27*e-13/216*f-5/54*g-7/54*h)*ln(x- 
2)+(-1/108*d+1/27*e-7/108*f+5/54*g-13/108*h)*ln(x+1)+(1/108*d+1/27*e+7/108 
*f+5/54*g+13/108*h)*ln(x-1)+(19/864*d-1/27*e+13/216*f-5/54*g+7/54*h)*ln(x+ 
2)
 
3.1.29.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 304 vs. \(2 (134) = 268\).

Time = 1.40 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.03 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=-\frac {12 \, {\left (5 \, d + 8 \, f + 20 \, h\right )} x^{3} + 48 \, {\left (2 \, e + 5 \, g\right )} x^{2} - 12 \, {\left (17 \, d + 20 \, f + 32 \, h\right )} x - {\left ({\left (19 \, d - 32 \, e + 52 \, f - 80 \, g + 112 \, h\right )} x^{4} - 5 \, {\left (19 \, d - 32 \, e + 52 \, f - 80 \, g + 112 \, h\right )} x^{2} + 76 \, d - 128 \, e + 208 \, f - 320 \, g + 448 \, h\right )} \log \left (x + 2\right ) + 8 \, {\left ({\left (d - 4 \, e + 7 \, f - 10 \, g + 13 \, h\right )} x^{4} - 5 \, {\left (d - 4 \, e + 7 \, f - 10 \, g + 13 \, h\right )} x^{2} + 4 \, d - 16 \, e + 28 \, f - 40 \, g + 52 \, h\right )} \log \left (x + 1\right ) - 8 \, {\left ({\left (d + 4 \, e + 7 \, f + 10 \, g + 13 \, h\right )} x^{4} - 5 \, {\left (d + 4 \, e + 7 \, f + 10 \, g + 13 \, h\right )} x^{2} + 4 \, d + 16 \, e + 28 \, f + 40 \, g + 52 \, h\right )} \log \left (x - 1\right ) + {\left ({\left (19 \, d + 32 \, e + 52 \, f + 80 \, g + 112 \, h\right )} x^{4} - 5 \, {\left (19 \, d + 32 \, e + 52 \, f + 80 \, g + 112 \, h\right )} x^{2} + 76 \, d + 128 \, e + 208 \, f + 320 \, g + 448 \, h\right )} \log \left (x - 2\right ) - 240 \, e - 384 \, g}{864 \, {\left (x^{4} - 5 \, x^{2} + 4\right )}} \]

input
integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4-5*x^2+4)^2,x, algorithm="fricas")
 
output
-1/864*(12*(5*d + 8*f + 20*h)*x^3 + 48*(2*e + 5*g)*x^2 - 12*(17*d + 20*f + 
 32*h)*x - ((19*d - 32*e + 52*f - 80*g + 112*h)*x^4 - 5*(19*d - 32*e + 52* 
f - 80*g + 112*h)*x^2 + 76*d - 128*e + 208*f - 320*g + 448*h)*log(x + 2) + 
 8*((d - 4*e + 7*f - 10*g + 13*h)*x^4 - 5*(d - 4*e + 7*f - 10*g + 13*h)*x^ 
2 + 4*d - 16*e + 28*f - 40*g + 52*h)*log(x + 1) - 8*((d + 4*e + 7*f + 10*g 
 + 13*h)*x^4 - 5*(d + 4*e + 7*f + 10*g + 13*h)*x^2 + 4*d + 16*e + 28*f + 4 
0*g + 52*h)*log(x - 1) + ((19*d + 32*e + 52*f + 80*g + 112*h)*x^4 - 5*(19* 
d + 32*e + 52*f + 80*g + 112*h)*x^2 + 76*d + 128*e + 208*f + 320*g + 448*h 
)*log(x - 2) - 240*e - 384*g)/(x^4 - 5*x^2 + 4)
 
3.1.29.6 Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate((h*x**4+g*x**3+f*x**2+e*x+d)/(x**4-5*x**2+4)**2,x)
 
output
Timed out
 
3.1.29.7 Maxima [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.97 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{864} \, {\left (19 \, d - 32 \, e + 52 \, f - 80 \, g + 112 \, h\right )} \log \left (x + 2\right ) - \frac {1}{108} \, {\left (d - 4 \, e + 7 \, f - 10 \, g + 13 \, h\right )} \log \left (x + 1\right ) + \frac {1}{108} \, {\left (d + 4 \, e + 7 \, f + 10 \, g + 13 \, h\right )} \log \left (x - 1\right ) - \frac {1}{864} \, {\left (19 \, d + 32 \, e + 52 \, f + 80 \, g + 112 \, h\right )} \log \left (x - 2\right ) - \frac {{\left (5 \, d + 8 \, f + 20 \, h\right )} x^{3} + 4 \, {\left (2 \, e + 5 \, g\right )} x^{2} - {\left (17 \, d + 20 \, f + 32 \, h\right )} x - 20 \, e - 32 \, g}{72 \, {\left (x^{4} - 5 \, x^{2} + 4\right )}} \]

input
integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4-5*x^2+4)^2,x, algorithm="maxima")
 
output
1/864*(19*d - 32*e + 52*f - 80*g + 112*h)*log(x + 2) - 1/108*(d - 4*e + 7* 
f - 10*g + 13*h)*log(x + 1) + 1/108*(d + 4*e + 7*f + 10*g + 13*h)*log(x - 
1) - 1/864*(19*d + 32*e + 52*f + 80*g + 112*h)*log(x - 2) - 1/72*((5*d + 8 
*f + 20*h)*x^3 + 4*(2*e + 5*g)*x^2 - (17*d + 20*f + 32*h)*x - 20*e - 32*g) 
/(x^4 - 5*x^2 + 4)
 
3.1.29.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.01 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{864} \, {\left (19 \, d - 32 \, e + 52 \, f - 80 \, g + 112 \, h\right )} \log \left ({\left | x + 2 \right |}\right ) - \frac {1}{108} \, {\left (d - 4 \, e + 7 \, f - 10 \, g + 13 \, h\right )} \log \left ({\left | x + 1 \right |}\right ) + \frac {1}{108} \, {\left (d + 4 \, e + 7 \, f + 10 \, g + 13 \, h\right )} \log \left ({\left | x - 1 \right |}\right ) - \frac {1}{864} \, {\left (19 \, d + 32 \, e + 52 \, f + 80 \, g + 112 \, h\right )} \log \left ({\left | x - 2 \right |}\right ) - \frac {5 \, d x^{3} + 8 \, f x^{3} + 20 \, h x^{3} + 8 \, e x^{2} + 20 \, g x^{2} - 17 \, d x - 20 \, f x - 32 \, h x - 20 \, e - 32 \, g}{72 \, {\left (x^{4} - 5 \, x^{2} + 4\right )}} \]

input
integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4-5*x^2+4)^2,x, algorithm="giac")
 
output
1/864*(19*d - 32*e + 52*f - 80*g + 112*h)*log(abs(x + 2)) - 1/108*(d - 4*e 
 + 7*f - 10*g + 13*h)*log(abs(x + 1)) + 1/108*(d + 4*e + 7*f + 10*g + 13*h 
)*log(abs(x - 1)) - 1/864*(19*d + 32*e + 52*f + 80*g + 112*h)*log(abs(x - 
2)) - 1/72*(5*d*x^3 + 8*f*x^3 + 20*h*x^3 + 8*e*x^2 + 20*g*x^2 - 17*d*x - 2 
0*f*x - 32*h*x - 20*e - 32*g)/(x^4 - 5*x^2 + 4)
 
3.1.29.9 Mupad [B] (verification not implemented)

Time = 7.98 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.97 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {\left (-\frac {5\,d}{72}-\frac {f}{9}-\frac {5\,h}{18}\right )\,x^3+\left (-\frac {e}{9}-\frac {5\,g}{18}\right )\,x^2+\left (\frac {17\,d}{72}+\frac {5\,f}{18}+\frac {4\,h}{9}\right )\,x+\frac {5\,e}{18}+\frac {4\,g}{9}}{x^4-5\,x^2+4}+\ln \left (x-1\right )\,\left (\frac {d}{108}+\frac {e}{27}+\frac {7\,f}{108}+\frac {5\,g}{54}+\frac {13\,h}{108}\right )-\ln \left (x+1\right )\,\left (\frac {d}{108}-\frac {e}{27}+\frac {7\,f}{108}-\frac {5\,g}{54}+\frac {13\,h}{108}\right )-\ln \left (x-2\right )\,\left (\frac {19\,d}{864}+\frac {e}{27}+\frac {13\,f}{216}+\frac {5\,g}{54}+\frac {7\,h}{54}\right )+\ln \left (x+2\right )\,\left (\frac {19\,d}{864}-\frac {e}{27}+\frac {13\,f}{216}-\frac {5\,g}{54}+\frac {7\,h}{54}\right ) \]

input
int((d + e*x + f*x^2 + g*x^3 + h*x^4)/(x^4 - 5*x^2 + 4)^2,x)
 
output
((5*e)/18 + (4*g)/9 - x^2*(e/9 + (5*g)/18) + x*((17*d)/72 + (5*f)/18 + (4* 
h)/9) - x^3*((5*d)/72 + f/9 + (5*h)/18))/(x^4 - 5*x^2 + 4) + log(x - 1)*(d 
/108 + e/27 + (7*f)/108 + (5*g)/54 + (13*h)/108) - log(x + 1)*(d/108 - e/2 
7 + (7*f)/108 - (5*g)/54 + (13*h)/108) - log(x - 2)*((19*d)/864 + e/27 + ( 
13*f)/216 + (5*g)/54 + (7*h)/54) + log(x + 2)*((19*d)/864 - e/27 + (13*f)/ 
216 - (5*g)/54 + (7*h)/54)